If it's not what You are looking for type in the equation solver your own equation and let us solve it.
256+x^2=900
We move all terms to the left:
256+x^2-(900)=0
We add all the numbers together, and all the variables
x^2-644=0
a = 1; b = 0; c = -644;
Δ = b2-4ac
Δ = 02-4·1·(-644)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{161}}{2*1}=\frac{0-4\sqrt{161}}{2} =-\frac{4\sqrt{161}}{2} =-2\sqrt{161} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{161}}{2*1}=\frac{0+4\sqrt{161}}{2} =\frac{4\sqrt{161}}{2} =2\sqrt{161} $
| 10-r=-10-5r+6r | | 2x=16+6 | | 9z-4=-10z-21 | | –1=z+3/4 | | 4x-9=2x-9 | | 2n+3(n-1)+4(n+2)=50 | | 360=2x96+2x | | 52/25a=32/25 | | 8x+25=105+3x | | –1=z+34 | | 13-9y=-3y+1 | | 12(8x-14)=-13 | | -9+3t=-2t+6 | | 5x+6=2x+78 | | 2(x+1)+3(x+2)=33 | | x=68+26-180 | | 9+a/10=1 | | 3x-52=7x | | 2k+5k=8 | | x=68+26 | | 8x+7=-1x+16 | | x+48+78=180 | | -9+3t=-2+6 | | 12=d+11 | | 4y-2=10* | | 4x–4+2x=6x | | 7r-36=-4r+41 | | 2(x+3)+x=5(x-2) | | 18=a+18 | | 8+u=2u-2 | | 2(3x+2)–x+3=–(x–10) | | 9+5y-2=4+6y-3 |